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Complexity of equilibrium concepts 
from (noncooperative) game theory 

•  Solutions are less useful if they cannot be determined 
–  So, their computational complexity is important 

•  Early research studied complexity of board games 
–  E.g. chess, Go 
–  Complexity results here usually depend on structure of game 

(allowing for concise representation) 
•  Hardness result => exponential in the size of the representation 

–  Usually zero-sum, alternating move 
•  Real-world strategic settings are much richer 

–  Concise representation for all games is impossible 
–  Not necessarily zero-sum/alternating move 
–  Sophisticated agents need to be able to deal with such games… 



Why study computational complexity 
of solving games? 

•  Determine whether game theory can be used to model real-world 
settings in all detail (=> large games) rather than studying simplified 
abstractions 
–  Solving requires the use of computers 

•  Program strategic software agents 
•  Analyze whether a solution concept is realistic 

–  If solution is too hard to find, it will not occur 
•  Complexity of solving gives a lower bound on complexity 

(reasoning+interaction) of learning to play equilibrium 
•  In mechanism design 

–  Agents might not find the optimal way the designer motivated them to play 
–  To identify where the opportunities are for doing better than revelation 

principle would suggest 
•  Hardness can be used as a barrier for playing optimally for oneself [Conitzer & 

Sandholm LOFT-04, Othman & Sandholm COMSOC-08, …] 



Nash equilibrium: example 
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Nash equilibrium: example 
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Complexity of finding a 
mixed-strategy Nash 

equilibrium in a normal-form 
game 

•  PPAD-complete even with just 2 players [Cheng & 
Deng FOCS-06] 

•  …even if all payoffs are in {0,1} [Abbott, Kane & 
Valiant 2005] 



Rest of this slide pack is about 
[Conitzer&Sandholm IJCAI-03, GEB-08] 

•  Solved several questions related to Nash equilibrium 
–  Is the question easier for symmetric games? 
–  Hardness of finding certain types of equilibrium 
–  Hardness of finding equilibria in more general game 

representations: Bayesian games, Markov games 
•  All of our results are for standard matrix 

representations 
–  None of the hardness derives from compact 

representations, such as graphical games, Go 
–  Any fancier representation must address at least these 

hardness results, as long as the fancy representation is 
general 



Does symmetry make equilibrium finding easier? 

0 G 
G’ 0 

•  G or G’ (or both) must be played with nonzero probability in equilibrium. 
WLOG, by symmetry, say at least G 

•  Given that Row is playing in r, it must be a best response to Column’s 
strategy given that Column is playing in c, and vice versa 

•  So we can normalize Row’s distribution on r given that Row plays r, and 
Column’s distribution on c given that Column plays c, to get a NE for G! 

•  No: just as hard as the general question 
•  Let G be any game (not necessarily symmetric) 

whose equilibrium we want to find 
– WLOG, suppose all payoffs > 0 

•  Given an algorithm for solving symmetric games… 
•  We can feed it the following game: 

– G’ is G with the players switched 

c r 
r 
c 



Example: asymmetric “chicken” 
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Review of computational complexity 
•  Algorithm’s running time is a fn of length n of the input 
•  Complexity of problem is fastest algorithm’s running time  
•  Classes of problems, from narrower to broader 

–  P: If there is an algorithm for a problem that is O(p(n)) for some 
polynomial p(n), then the problem is in P 

•  Necessary & sufficient to be considered “efficiently computable” 
–  NP: A problem is in NP if its answer can be verified in polynomial time  

•  if the answer is positive 
–  #P = problems of counting the number of solutions to problems in NP 
–  PSPACE = set of problems solvable using polynomial memory 

•  Problem is “C-hard” if it is at least as hard as every problem in C 
–  Highly unlikely that NP-hard problems are in P 

•  Problem is “C-complete” if it is C-hard and in C 



A useful reduction (SAT -> game) 
•  Theorem.  SAT-solutions correspond to mixed-strategy equilibria of 

the following game (each agent randomizes uniformly on support) 
SAT Formula: (x1 or -x2) and (-x1 or x2 ) 
Solutions: x1=true, x2=true 

x1=false,x2=false 
Game: x1 x2 +x1 -x1 +x2 -x2 (x1 or -x2) (-x1 or x2) default 

x1 -2,-2 -2,-2 0,-2 0,-2 2,-2 2,-2 -2,-2 -2,-2 0,1 
x2 -2,-2 -2,-2 2,-2 2,-2 0,-2 0,-2 -2,-2 -2,-2 0,1 

+x1 -2,0 -2,2 1,1 -2,-2 1,1 1,1 -2,0 -2,2 0,1 
-x1 -2,0 -2,2 -2,-2 1,1 1,1 1,1 -2,2 -2,0 0,1 
+x2 -2,2 -2,0 1,1 1,1 1,1 -2,-2 -2,2 -2,0 0,1 
-x2 -2,2 -2,0 1,1 1,1 -2,-2 1,1 -2,0 -2,2 0,1 

(x1 or -x2) -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1 
(-x1 or x2) -2,-2 -2,-2 2,-2 0,-2 0,-2 2,-2 -2,-2 -2,-2 0,1 
default 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε,ε 

Different from IJCAI-03 reduction 

 Proof sketch: 
–  Playing opposite literals (with any probability) is unstable 
–  If you play literals (with probabilities), you should make sure that  

•  for every clause, the probability of playing a literal in that clause is high enough, and  
•  for every variable, the probability of playing a literal that corresponds to that variable is high enough 
•  (otherwise the other player will play this clause/variable and hurt you) 

–  So equilibria where both randomize over literals can only occur when both randomize over same SAT solution 
–  These are the only equilibria (in addition to the “bad” default equilibrium) 

As #vars gets large enough,  
all payoffs are nonnegative 



Complexity of mixed-strategy Nash equilibria 
with certain properties 

•  This reduction implies that there is an equilibrium where players get expected 
utility n-1 (n=#vars) each iff the SAT formula is satisfiable 
–  Any reasonable objective would prefer such equilibria to ε-payoff equilibrium 

•  Corollary. Deciding whether a “good” equilibrium exists is NP-complete: 
–  1. equilibrium with high social welfare  
–  2. Pareto-optimal equilibrium 
–  3. equilibrium with high utility for a given player i 
–  4. equilibrium with high minimal utility 

•  Also NP-complete (from the same reduction): 
–  5. Does more than one equilibrium exists? 
–  6. Is a given strategy ever played in any equilibrium? 
–  7. Is there an equilibrium where a given strategy is never played? 
–  8. Is there an equilibrium with >1 strategies in the players’ supports? 

•  (5) & weaker versions of (4), (6), (7) were known [Gilboa, Zemel GEB-89] 
•  All these hold even for symmetric, 2-player games 



More implications: coalitional deviations 

•  Def. A Nash equilibrium is a strong Nash equilibrium if 
there is no joint deviation by (any subset of) the players 
making them all better off 

•  In our game, the ε, ε equilibrium is not strong: can switch to 
n-1,n-1 

•  But any n-1,n-1 equilibrium (if it exists) is strong, so… 
•  Corollary. Deciding whether a strong NE exists is NP-

complete 
–  Even in 2-player symmetric game 



More implications: approximability 

•  How approximable are the objectives we might maximize under 
the constraint of Nash equilibrium? 
–  E.g., social welfare 

•  Corollary. The following are inapproximable to any ratio in the 
space of Nash equilibria (unless P=NP): 
–  maximum social welfare 
–  maximum egalitarian social welfare (worst-off player’s utility) 
–  maximum player 1’s utility 

•  Corollary. The following are inapproximable to ratio 
o(#strategies) in the space of Nash equilibria (unless P=NP): 
–  maximum number of strategies in one player’s support 
–  maximum number of strategies in both players’ supports 



Counting the number of mixed-strategy 
Nash equilibria 

•  Why count equilibria?   
–  If we cannot even count the equilibria, there is little hope of 

getting a good overview of the overall strategic structure of the 
game 

•  Unfortunately, our reduction implies: 
–  Corollary. Counting Nash equilibria is #P-hard 

•  Proof.  #SAT is #P-hard, and the number of equilibria is 1 + #SAT 
–  Corollary. Counting connected sets of equilibria is just as hard 

•  Proof.  In our game, each equilibrium is alone in its connected set 
–  These results hold even for symmetric, 2-player games 



Win-Loss Games/Zero-Sum Games 
•  “Win-loss” games = two-player games where the utility 

vector is always (0, 1) or (1, 0) 
•  Theorem. For every m by n zero-sum (normal form) game 

with player 1’s payoffs in {0, 1, …, r}, we can construct an 
rm by rn win-loss game with the “same” equilibria 
–  Probability on strategy i in original ~ Sum of probabilities on ith 

block of r strategies in new  

0, 0 -1, 1 1, -1 
1, -1 0, 0 -1, 1 
-1, 1 1, -1 0, 0 

w l w w l l 
l w w w l l 
l l w l w w 
l l l w w w 
w w l l w l 
w w l l l w 

•  So, cannot be much easier to construct minimax strategy in 
win-loss game than in zero-sum game 



Complexity of finding 
pure-strategy equilibria 

•  Pure strategy equilibria are nice 
–  Avoids randomization over strategies between which players are 

indifferent 

•  In a matrix game, it is easy to find pure strategy equilibria 
–  Can simply look at every entry and see if it is a Nash equilibrium 

•  Are pure-strategy equilibria easy to find in more general 
game structures? 

•  Games with private information 
•  In such games, often the space of all possible strategies is 

no longer polynomial 



Bayesian games 
•  In Bayesian games, players have private information 

about their preferences (utility function) about outcomes 
–  This information is called a type 
–  In a more general variant, may also have information about 

others’ payoffs 
•  Our hardness result generalizes to this setting 

•  There is a commonly known prior over types 
•  Each players can condition his strategy on his type 

–  With 2 actions there are 2#types pure strategy combinations 
•  In a Bayes-Nash equilibrium, each player’s strategy (for 

every type) is a best response to other players’ strategies 
–  In expectation with respect to the prior 



Bayesian games: Example 

*,1 *,2 
*,10 *,1 

*,1 *,2 
*,2 *,1 

2,* 2,* 
1,* 3,* 

10,* 5,* 
5,* 10,* 

Player 1, type 1 
Probability .6 

Player 1, type 2 
Probability .4 

Player 2, type 2 
Probability .3 

Player 2, type 1 
Probability .7 



Complexity of Bayes-Nash equilibria 
•  Theorem. Deciding whether a pure-strategy Bayes-Nash 

equilibrium exists is NP-complete 
–  Proof sketch.  (easy to make the game symmetric) 

•  Each of player 1’s strategies, even if played with low probability, makes 
some of player 2’s strategies unappealing to player 2 

•  With these, player 1 wants to “cover” all of player 2’s strategies that are 
bad for player 1.  But player 1 can only play so many strategies (one for 
each type) 

•  This is SET-COVER 



Complexity of Nash equilibria 
in stochastic (Markov) games 

•  We now shift attention to games with multiple stages 
•  Some NP-hardness results have already been shown here 
•  Ours is the first PSPACE-hardness result (to our 

knowledge) 
•  PSPACE-hardness results from e.g. Go do not carry over 

–  Go has an exponential number of states  
–  For general representation, we need to specify states explicitly 

•  We focus on Markov games 



Stochastic (Markov) game: Definition 
•  At each stage, the game is in a given state 

–  Each state has its own matrix game associated with it 
•  For every state, for every combination of pure strategies, there are 

transition probabilities to the other states 
–  The next stage’s state will be chosen according to these probabilities 

•  There is a discount factor δ <1 

•  Player j’s total utility = ∑i δi uij where uij is player j’s utility in 
stage i 

•  A number N of stages (possibly infinite) 
•  The following may, or may not, or may partially be, known to the 

players: 
–  Current and past states 
–  Others’ past actions 
–  Past payoffs 



Markov Games: example 

5,5 0,6 
6,0 1,1 

2,1 0,0 
0,0 1,2 

2,1 1,2 
1,2 2,1 
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Complexity of Nash equilibria 
in stochastic (Markov) games… 

•  Strategy spaces here are rich (agents can condition on past events) 
–  So maybe high-complexity results are not surprising, but … 

•  High complexity even when players cannot condition on anything! 
–  No feedback from the game: the players are playing “blindly” 

•  Theorem. Even under this restriction, deciding whether a pure-
strategy Nash equilibrium exists is PSPACE-hard 
–  even if game is 2-player, symmetric, and transition process is deterministic 
–  Proof sketch.  Reduction is from PERIODIC-SAT, where an infinitely 

repeating formula must be satisfied [Orlin, 81] 

•  Theorem. Even under this restriction, deciding whether a pure-
strategy Nash equilibrium exists is NP-hard even if game has a finite 
number of stages 



Conclusions 
•  Finding a NE in a symmetric game is as hard as in a general 2-

person matrix game 
•  General reduction (SAT-> 2-person symmetric matrix game) => 

–  Finding a “good” NE is NP-complete 
•  Approximating “good” to any ratio is NP-hard 

–  Does more than one NE exist? …NP-complete 
–  Is a given strategy ever played in any NE? …NP-complete 
–  Is there a NE where a given strategy is never played? …NP-complete 
–  Approximating large-support NE is hard to o(#strategies) 
–  Counting NEs is #P-hard 
–  Determining existence of strong NE is NP-complete 

•  Deciding whether pure-strategy BNE exists is NP-complete 
•  Deciding whether pure-strategy NE in a (even blind) Markov 

game exists is PSPACE-hard 
–  Remains NP-hard even if the number of stages is finite 



Complexity results about  
iterated elimination 

1.  NP-complete to determine whether a particular strategy can 
be eliminated using iterated weak dominance 

2.  NP-complete to determine whether we can arrive at a 
unique solution (one strategy for each player) using iterated 
weak dominance 

•  Both hold even with 2 players, even when all payoffs are {0, 1}, 
whether or not dominance by mixed strategies is allowed 

–  [Gilboa, Kalai, Zemel 93] show (2) for dominance by pure 
strategies only, when payoffs in {0, 1, 2, 3, 4, 5, 6, 7, 8} 

•  In contrast, these questions are easy for iterated strict dominance 
because of order independence (using LP to check for mixed 
dominance) 



New definition of eliminability 

•  Incorporates some level of equilibrium reasoning 
into eliminability 

–  Spans a spectrum of strength from strict dominance to 
Nash equilibrium  
•  Can solve games that iterated elimination cannot 
•  Can provide a stronger justification than Nash 
•  Operationalizable using MIP 
•  Can be used in other algorithms (e.g., for Nash finding) to 

prune pure strategies along the way 



Motivating example 

?, ? ?, 2 ?, 0 ?, 0 
2, ? 2, 2 2, 0 2, 0 
0, ? 0, 2 3, 0 0, 3 
0, ?  0, 2 0, 3 3, 0 

r1  
r2  
r3  
r4  

c1  c2  c3  c4  

•  r2 almost dominates r3 and r4; c2 almost dominates c3 and c4  

•  R should not play r3 unless C plays c3 at least 2/3 of time 
•  C should not play c3 unless R plays r4 at least 2/3 of time 
•  R should not play r4 unless C plays c4 at least 2/3 of time 
•  But C cannot play 2 strategies with probability 2/3 each! 
•  So: r3 should not be played 



Definition 
•  Let Dr, Er be subsets of row player’s pure strategies 
•  Let Dc, Ec be subsets of column player’s pure strategies 
•  Let er*  Er be the strategy to eliminate 
•  er* is not eliminable relative to Dr, Er, Dc, Ec if there exist 

pr: Er [0, 1] and pc: Ec [0, 1] with  pr(er)  1,  
pc(ec)  1, and pr(er*) > 0, such that: 

•  1. For any er  Er with pr(er) > 0,      
for any mixed strategy dr that uses only strategies in Dr ,  

 there is some sc  Ec such that      
 if the column player places its remaining   
 probability on sc,        
 er is at least as good as dr 

–  (If there is no probability remaining ( pc(ec) = 1), er should 
simply be at least as good as dr) 

•  2. Same for the column player 



Definition of new concept (as argument between defender & attacker) 

er* Er 

Dr 

Dc Ec 

Given: subsets 
Dr, Dc, Er, Ec, 

and er* 

Defender of er* specifies a 
justification, i.e., 

probabilities on E sets 
(must give nonzero to er*) 

Attacker picks a pure strategy e 
(of positive probability) from 

one of the E sets to attack,  
and attacking mixed strategy d 

from same player’s D 
Defender completes 

probability distribution. 
Defender wins (strategy is 
not eliminated) iff d does 

not do better than e 

d e 



Spectrum of strength 
•  Thrm. If there is a Nash equilibrium with probability on sr, 

then sr is not eliminable relative to any Dr, Er, Dc, Ec 
•  Thrm. Suppose we make Dr, Er, Dc, Ec as large as possible 

(each contains all strategies of the appropriate player). Then 
sr is eliminable iff no Nash equilibrium puts probability on sr  
–  Corollary: checking eliminability in this case is coNP-complete 

(because checking whether any Nash eq puts probability on a given 
strategy is NP-complete [Gilboa & Zemel 89, Conitzer & Sandholm 03]) 

•  Thrm. If sr is strictly dominated by dr then sr is eliminable 
relative to any Dr, Er, Dc, Ec 
–  (as long as sr  Er and dr only uses strategies in Dr) 

•  Thrm. If Ec ={} and Er ={sr}, then sr is eliminable iff it is 
strictly dominated by some dr (that only uses strategies in Dr) 



What is it good for? 

•  Suppose we can eliminate a strategy using the Nash 
equilibrium concept, but not using (iterated) dominance 

•  Then, using this definition, we may be able to make a 
stronger argument than Nash equilibrium for eliminating the 
strategy 

•  The smaller the sets relative to which we are eliminating, 
the more “local” the reasoning, and the closer we are to 
dominance 



Thank you for your attention! 


